Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University. Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology.

www.eajbs.eg.net

Assessment of the toxic and disruptive effects of Precocene II on growth and metamorphosis of the grasshopper *Euprepocnemis plorans plorans* (Charp.) (Orthoptera: Acrididae).

Ghoneim, K. and Basiouny, A.
Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Cairo, Egypt
E.mail: karemghoneim@gmail.com or karem_ghoneim@azhar.edu.eg

ABSTRACT

As reported in Egypt, the grasshopper *Euprepocnemis plorans plorans* is considered as a serious pest to crops in some regions. The objective of the current investigation was to evaluate the toxic and disruptive effects of the anti-JH compound, Precocene II (PII), on this pest. Nymphs of the newly moulted 2nd and 4th (penultimate) instars had been exposed to the doses: 60, 40, 20 and 10 µg/cm². Complete mortality of nymphs was observed within 24 h of exposure of 2nd instar nymphs to the higher two doses. At other doses, PII exhibited a remarkably extended low toxicity on the subsequently moulted nymphal instars and emerged adults. After exposure of the 4th instar nymphs to PII, no complete mortality was observed, but various mortalities had been recorded among the treated nymphs, 5th instar nymphs and adults. LD₅₀ values of PII were calculated as 0.388 and 17.022µg/cm², after treatment of 2nd and 4th instar nymphs, respectively. After treatment of 2nd instar nymphs with PII, the nymphal growth of both 4th and 5th instars was insignificantly inhibited, regardless the dose. Exposure of 2nd instar nymphs to the lowest dose of PII led to 3.33% precociously moulted nymphs into 4th instar, skipping off the 3rd instar. On the other hand, exposure of 4th instar nymphs to the higher two doses of PII induced some treated nymphs to precociously metamorphose into adultoids, skipping over the 5th instar. Some permanent nymphs (3.85%) appeared among the 2nd instar nymphs after exposure only to 20µg/cm². Also, similar permanent nymphs were induced during the 4th instar. No permanent nymphs had been induced after exposure of 4th instar nymphs to PII.

INTRODUCTION

As a result of indiscriminate and excessive uses, the conventional insecticides usually exhibit several serious impacts on the human health and beneficial animals as well as cause toxicological problems to the environmental systems (Van Der Gaag, 2000; Costa *et al.*, 2008; Relyea, 2009; Tiryaki and Temur, 2010). Furthermore, the conventional insecticides have a tendency to accumulate in different trophic levels of the food net (Damalas and Eleftherohorinos, 2011; Chowański *et al.*, 2014). In addition, the repeated use of many insecticides results in the development of resistance in the emerging insect strains (Davies *et al.*, 2007, Mosallanejad and Smagghe, 2009). Therefore, eco-friendly insecticides have received global attention in recent decades as an alternative to these conventional insecticides. These
alternative compounds should be characterized by a short period of half-life in the environment, lower toxicity to non-target organisms and their efficiency at low concentrations (Attathom, 2002; Gade and Goldsworthy, 2003; Tiryaki and Temur, 2010; Walkowiak et al., 2015; Li et al., 2017).

It should be mentioned that the use of juvenile hormone (JH) or JH-based compounds for pest control was early suggested by some authors (Williams, 1967; Staal, 1976, 1982) as "third generation insecticides". Screening new targets involved in JH-biosynthesis within the corpora allata has been a subject of study in the past four decades (Bede et al., 2001). So, compounds that interact with JH, stimulate JH-biosynthesis or interfere with its catabolism can be appreciated as new insecticidal agents against insect pests (Nandi and Chakravarty, 2011). These compounds can be collectively called as 'insect growth regulators' (IGRs). IGRs are not directly toxic, but act selectively on normal growth, development, metamorphosis and/or reproduction in insects via disrupting the hormonally regulated physiological processes (Martins and Silva, 2004; Wang and Liu, 2016). Because of their desirable characteristics, such as low toxicity, less environmental pollution, high selectivity, and low impact on natural enemies and human health, IGRs are usually used to control various insect pests (Cedric, 2005; Wang and Wang, 2007; Resmitha and Meethal, 2016).

Precocenes are originally phytochemicals causing precocious metamorphosis in insects. They had been isolated by Bowers et al. (1976). Depending on their mode of action, they were described as "chemical allatectomy" agents (Aboulafia-Baginsky et al., 1984). The effects of precocenes on different pests belonging to various insect orders had been extensively reviewed by Staal (1986). However, Precocene-I (7 methoxy-2,2-dimethylchromene, PI) and Precocene-II (6,7-dimethoxy-2,2-dimethylchromene, PII) have been used as insect regulators by inducing symptoms of JH-deficiency in insects (Amsalem et al., 2012, 2014; Ghosh et al., 2012). Consequently, this inhibition can disrupt the embryonic development, induce premature metamorphosis, and disturb the insect behaviour, beside their effects as antifeedants and repellents (Khan and Kumar, 2000; Pathak and Bhandari, 2002; Khan and Kumar, 2005; Chen et al., 2005a; Ringo et al., 2005; Gaur and Kumar, 2009; Lu et al., 2014). In addition, precocenes have been shown to derange the reproductive potential in adults of several insects by prevention of the normal vitellogenesis of the oocytes, leading to sterility (Kumar and Khan, 2004; Ringo et al., 2005; Amiri et al., 2010).

As reported by some authors (Staal, 1986; Singh and Bhatthal, 1994; Hoffmann and Lorenz, 1998), precocenes either inhibit JH biosynthesis or act as inhibitors of the enzyme action. Therefore, precocenes and other anti-JH agents have been considered prototypes of "fourth-generation pesticides" (Sariaslani et al., 1987; Moya et al., 1997; Szczepanik et al., 2005; Banerjee et al., 2008; Singh and Kumar, 2011). It has been demonstrated that the design of JH mimics or anti-JH agents is an effective strategy for insecticide discovery (Bede et al., 2001). Compounds with anti-JH activity are considered as new representatives of IGRs lacking some disadvantages of juvenoid-type chemicals (Bowers, 1982; Staal, 1982). These chemicals are potentially efficacious for control of the major insect pests where most of the damage is caused by the larval stage (El-Ibrashy, 1982).

Grasshoppers have been reported as serious pests in Egypt especially in the newly reclaimed area (EL-Garhy et al., 1988). The most adversely economic grasshopper is *Euprepocnemis plorans plorans* (Charp.) (Orthoptera: Acrididae). Although this grasshopper species caused 95% damage to crops of the Nile Delta,
Egypt (Abdel-Fattah, 2002), it received a little attention of research in Egypt (Ghoneim et al., 1994a,b, 1995; El Sayed, 1998a,b; Abdel-Fattah, 2002; Mohamed, 2014). The control strategies against this grasshopper species still depend upon the conventional insecticides. Although these chemicals are often effective, but not always appropriate. The present study was conducted to evaluate the toxicity and anti-hormonal activities of PII on growth and metamorphosis of this grasshopper.

MATERIALS AND METHODS

1. **Experimental Insect:**
 A culture of *Euprepocnemis plorans plorans* (Charp.) (Orthoptera: Acrididae) was originated by a sample of nymphs and adults from the susceptible culture maintained for several generations along some years in Locust and Grasshopper Department, Plant Protection Research Institute, Giza, Egypt. It was reared under laboratory controlled conditions (32±2°C, 65±5% R.H. and 12h dark: 12h light) at Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Cairo. Both adults and nymphs were raised in glass fronted cages (30 x 30 x 30 cm in diameter). The top of each cage had a small wire-gauze opening door. The bottom of cages was covered with a layer of sterilized sand (10 cm in depth). All cages were held at the laboratory controlled conditions. All developmental stages of the grasshopper were fed on the maize leaves (*Zea mays*), and a daily routine feeding and cleaning manipulations were continuously conducted.

2. **Precocene II Treatment:**
 Precocene II (6,7-dimethoxy-2,2-dimethylchromene, PII) was kindly provided by Dr. Heba Hassan, Prof. at Plant Protection Research Institute, Giza, Egypt. PII was diluted in acetone to prepare a series of doses: 60, 40, 20 and 10 µg/cm². A contact technique, originally described by Unnithan et al. (1980) for PII against *Schistocerca gregaria*, was applied. Bottom of a Petri dish (15x2 cm) was coated with each dose. After acetone evaporation, groups of 15 newly moulted nymphs of 2nd or 4th (penultimate) instar of *E. plorans plorans* were confined in each dish for 24h (exposure period). By this technique, the precocene fumigant could presumably reach the corpora allata within the insect rapidly via the tracheal system. Groups of 15 newly moulted nymphs of 2nd or 4th instar nymphs were confined in only acetone-treated Petri dishes and used as controls. All treated and control nymphs were kept under the previously mentioned laboratory conditions. After the exposure period, treated and control nymphs were transferred into clean Petri dishes and provided with suitable pieces of maize leaves, as fresh food, every day.

3. **Criteria of Study:**

 3.1. **Toxicity:**
 Initial mortality (%) was recorded within 24 h post-treatment whereas the extended toxic effect of PII was determined according to the recorded mortalities of all developmental stages. Only female nymphs and adults were used in the present study. LD₅₀ values were calculated by Microsoft Office Excel, 2007, according to Finny (1971).

 After exposure of 2nd instar nymphs to doses of PII, the successfully moulted nymphs of 4th and 5th instars were daily weighed (in mg). Also, the treated 4th instar nymphs and the successfully moulted 5th instar nymphs were daily weighed. Growth rates (GR) of 4th and 5th instar nymphs were calculated according to (Waldbauer, 1968) as follows: \(GR = \frac{G}{TA} \). Where G: fresh weight gain (mg) of nymphs along the instar. T: the instar period (in days). A: mean fresh body weight of nymphs
during the feeding period.

3.3. Development and Metamorphosis:

After exposure of 2nd and 4th instar nymphs to PII, all features of retarded development and impaired metamorphosis were recorded (in %).

4. Statistical Analysis of Data:

Data obtained were analyzed by the Student's t-distribution, and refined by Bessel correction (Moroney, 1956) for the test significance of the difference between means.

RESULTS

1. Toxic Effect of PII on \textit{E. plorans plorans}:

After exposure of the newly moulted 2nd instar female nymphs to different doses of PII, the toxic effect was detected by mortality (%) of nymphs. Data of mortality had been assorted in Table (1). According to these data, all treated 2nd instar nymphs completely died at 24 h post-treatment (initial mortality) by the higher two doses (60 and 40 μg/cm2). The lower two doses (20 and 10 μg/cm2) of PII caused only 26.92 and 20.00% mortality, respectively, at 24 h post-treatment. At 11 days post-treatment, the same lower doses caused 28.30 and 23.20% mortality, respectively, compared to 10.67% mortality of control nymphs. Thus, toxicity of PII increased by the time in the same instar. The lethal activity of PII extended to the subsequently moulted nymphal instars and adults. Mortality of 3rd instar nymphs were 20.10 and 18.12%, at 20 and 10 μg/cm2, respectively, vs. 6.0% of control mortality. At the lower two doses, mortality of 4th instar nymphs were 16.99 and 14.98%, respectively. As obviously seen, the toxic effect of PII appeared in a dose-dependent course against 2nd, 3rd, and 4th nymphal instars. PII, only with the lowest dose, affected the survival of 5th (last) instar nymphs, since 7.98% mortality was recorded. With regard to the emerged adult females, PII exhibited a weak mortal potency after treatment of 2nd instar nymphs (3.85%), only with 20 μg/cm2. LD\textsubscript{50} was calculated as 0.388 μg/cm2 (Table 1).

<table>
<thead>
<tr>
<th>Dose (µg/cm2)</th>
<th>Nymphal instars</th>
<th>Total mortality</th>
<th>LD\textsubscript{50} (µg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
</tr>
<tr>
<td>60</td>
<td>100.00</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>40</td>
<td>100.00</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>20</td>
<td>26.92</td>
<td>28.30</td>
<td>20.10</td>
</tr>
<tr>
<td>10</td>
<td>20.00</td>
<td>23.20</td>
<td>18.12</td>
</tr>
<tr>
<td>Controls</td>
<td>0.00</td>
<td>10.67</td>
<td>06.00</td>
</tr>
</tbody>
</table>

After exposure of the newly moulted 4th instar nymphs to different doses of PII, data of the toxicity were summarized in Table (2). Depending on these data, all doses caused various mortalities of the treated 4th instar nymphs and the moulted 5th nymphal instar nymphs. At 24 h post-exposure, the nymphal mortalities were recorded in 22.22, 40.74, 10.20 and 25.00%, at 60, 40, 20 and 10μg/cm2, respectively. Six days later, the toxic potency of PII decreased, since mortalities were 12.12, 30.85, 07.69 and 15.00%, at 60, 40, 20 and 10 μg/cm2, respectively, vs. 5.00% mortality of control nymphs. Regardless the dose level, toxic potency of PII decreased by the moult, since mortalities of 5th instar nymphs were 10.10, 21.00, 05.18 and 05.00%, at 60, 40, 20 and 10 μg/cm2, respectively. In addition, PII displayed its insecticidal activity
in no certain trend. In respect of the emerged adult females, only the lower two doses caused 7.69% and 10.00% mortality, respectively. LD$_{50}$ was determined as 17.022 μg/cm2 (Table 2). Depending on these data, the 2nd instar nymphs were more sensitive to PII toxicity than 4th instar nymphs.

Table 2: Mortality (%) of *E. plorans* after exposure of 4th instar female nymphs to PII.

<table>
<thead>
<tr>
<th>Dose (µg/cm2)</th>
<th>Nymphal instars</th>
<th>Adult females</th>
<th>Total mortality</th>
<th>LD$_{50}$ (µg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4th</td>
<td>5th</td>
<td>24 h post-</td>
<td>6 days post-</td>
</tr>
<tr>
<td>60</td>
<td>22.22</td>
<td>12.12</td>
<td>10.10</td>
<td>00.00</td>
</tr>
<tr>
<td>40</td>
<td>40.74</td>
<td>30.85</td>
<td>21.00</td>
<td>00.00</td>
</tr>
<tr>
<td>20</td>
<td>10.20</td>
<td>07.69</td>
<td>05.18</td>
<td>07.69</td>
</tr>
<tr>
<td>10</td>
<td>25.00</td>
<td>15.00</td>
<td>05.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Controls</td>
<td>00.00</td>
<td>05.00</td>
<td>00.00</td>
<td>00.00</td>
</tr>
</tbody>
</table>

2. Effect of PII on the Growth of *E. plorans* plorans:

Table (3) contains data of nymphal growth during only the latter two instars (4th and 5th), as affected by exposure of 2nd instar female nymphs to PII. In the light of these data, PII exerted a slight inhibitory action on growth of 4th instar nymphs (0.026±0.003 and 0.025±0.005, at 20 and 10 μg/cm2, respectively, vs. 0.030±0.004 of control nymphs). Also, a slight inhibitory action was exerted on the growth of 5th instar nymphs (0.026±0.002 and 0.027±0.004, at 20 and 10 μg/cm2, respectively, vs. 0.029±0.005 of control nymphs).

After exposure of the 4th instar nymphs to PII, data of nymphal growth were also arranged in the same table. As exiguously shown, PII exerted a weak suppressing action on growth of 4th instar nymphs after exposure to the highest and lowest doses (0.038±0.009 and 0.039±0.007, at 60 and 10 μg/cm2, respectively, vs. 0.043±0.015 of control congener). On the other hand, the growth rate of 5th instar nymphs was slightly suppressed at these doses (0.037±0.004 and 0.038±0.005, at 60 and 10 μg/cm2, respectively, vs. 0.039±0.001 of control congener). On the basis of data arranged in the aforementioned table, PII exerted potent suppressing action on the nymphal growth only at the middle two doses. Concerning the 4th instar nymphs, growth rates were considerably regressed (0.032±0.001 and 0.030±0.005, at 40 and 20 μg/cm2, respectively, vs. 0.043±0.015 of control nymphs). Similarly, the growth rate of 5th instar nymphs was remarkably regressed (0.028±0.005 and 0.029±0.001, at 40 and 20 μg/cm2, respectively, vs. 0.039±0.001 of control nymphs).

Table 3: Effects of PII on the growth rate (mean±SD) of the 4th and 5th instar female nymphs of *E. plorans*.

<table>
<thead>
<tr>
<th>Dose (µg/cm2)</th>
<th>Nymphal instars</th>
<th>Adult females</th>
<th>Total mortality</th>
<th>LD$_{50}$ (µg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4th</td>
<td>5th</td>
<td>24 h post-</td>
<td>6 days post-</td>
</tr>
<tr>
<td>60</td>
<td>22.22</td>
<td>12.12</td>
<td>10.10</td>
<td>00.00</td>
</tr>
<tr>
<td>40</td>
<td>40.74</td>
<td>30.85</td>
<td>21.00</td>
<td>00.00</td>
</tr>
<tr>
<td>20</td>
<td>10.20</td>
<td>07.69</td>
<td>05.18</td>
<td>07.69</td>
</tr>
<tr>
<td>10</td>
<td>25.00</td>
<td>15.00</td>
<td>05.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Controls</td>
<td>00.00</td>
<td>05.00</td>
<td>00.00</td>
<td>00.00</td>
</tr>
</tbody>
</table>

Mean±SD followed with the letter (a): not significantly different (p >0.05), (b): significantly different (p <0.05), (c): highly significantly different (p <0.01).
3. Effects of PII on Development and Metamorphosis of *E. plorans plorans*:

Depending on the data distributed in Table (4), two major features of retarded development and deranged metamorphosis could be recorded (in %), as permanent nymphs and precocious metamorphosis. After exposure of 2nd instar female nymphs to PII, the development was suspended in a feature of permanent nymphs which survived two-fold period of their control congener and failed to moult into the next instar ending in death. Permanent nymphs were induced in 3.85\% in the 2nd instar (only at dose 20 \(\mu\)g/cm\(^2\)) and 3.33\% in the 4th instar (only at dose 10 \(\mu\)g/cm\(^2\)). As clearly seen in the same table, 3.33\% of treated 2nd instar nymphs precociously moulted into 4th instar, skipping off the 3rd instar. These precociously developed nymphs survived more than 20 days and eventually perished.

After exposure of 4th instar female nymphs to PII, no permanent nymphs were observed. On the other hand, the metamorphosis program was impaired; since precocious adultoids (omitting the 5th instar) had been produced only at the higher two doses (11.11 and 3.70\%, at 60 and 40 \(\mu\)g/cm\(^2\), respectively). These precocious adultoids appeared normally in colour and behaviour but without wings. They survived more than one month and eventually perished with no ability to mate.

<table>
<thead>
<tr>
<th>Dose ((\mu)g/cm(^2))</th>
<th>Exposure of 2nd instar female nymphs</th>
<th>Exposure of the 4th instar female nymphs (% precocious adultoids)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Permanent nymphs (1) % Precocious development to 4th instar (2)</td>
<td>(% precocious adultoids) (3)</td>
</tr>
<tr>
<td>60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>40</td>
<td>---</td>
<td>11.11</td>
</tr>
<tr>
<td>20</td>
<td>3.85</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>3.33</td>
</tr>
<tr>
<td>Control</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(1\): Permanent nymphs survived two-fold period of control nymphs and eventually died. \(2\): Precocious development into the 4th instar (skipping the 3rd instar). \(3\): Precocious adultoids (skipping the 5th instar) had no wings and eventually died without mating.

DISCUSSION

1. Affected survival of *E. plorans plorans* by PII:

There are many reported works on the toxic effects of several anti-juvenile hormones (anti-JH) compounds against different insect species. For examples, both PI and PII exhibited larvicidal activities against several mosquito species, such as the yellow fever mosquito *Aedes aegypti*, *Anopheles sacharovi* and *An. stephensi* (Saxena et al., 1994; Yasyukevich and Zvantsov, 1999). The precocenes exhibited larvicidal effects, in a dose-dependent course, on the Colorado potato beetle *Leptinotarsa decemlineata* (Farazmand and Chaika, 2008). A toxicological effect of PII was reported by Abdullah (2009) against larvae of red palm weevil *Rynchophorus ferrugineus*. Also, PII exhibited larvicidal and pupicidal effects on the grey flesh fly *Parasarcophaga dux*, in a dose-dependent course (Nassar et al., 1999); larvicidal effect on the lepidopterous pest *Pericallia ricini* (Khan and Kumar, 2000); and larvicidal effect on the Asian tiger mosquito *Aedes albopictus* (Liu and Liu, 2014). Apart from precocenes, other anti-JH compounds displayed different
toxicities against some insects, such as synthesized EMD (ethyl (E)-3-methyl-2-dodecenolate)(Kuwano et al., 1988) and some synthesized analogues of FMev (tetrahydro-4-fluoromethyl-4-hydroxy-2H-pyran-2-one)(Shuto et al., 1988) against the mulberry silkworm *Bombyx mori*.

Results of the present study on *E. plorans plorans* were in agreement with those reported results of toxicity of some anti-JH compounds, since exposure of 2nd instar nymphs to the higher two doses (60 and 40 \(\mu g/cm^2 \)) of PII resulted in complete mortality of nymphs within the first 24h post exposure (initial mortality). At the lower two doses (20 and 10 \(\mu g/cm^2 \)), PII exhibited a prolong toxicity on the subsequently moulted instars but weak toxicity on adult females. After exposure of the 4th instar nymphs to PII, various mortalities had been recorded among the treated nymphs and 5th instar nymphs. Only at the lower two doses, PII affected the adult survival. For the explication of the nymphicidal effect of PII, it may be attributed to the prevention of molting nymphs to swallow volumes of air for splitting the old cuticle and expand the new one during ecdysis (Linton et al., 1997). Also, these nymphal deaths might be due to the prevented feeding and continuous starvation of the present insect (Ghoneim et al., 2000). The adult mortalities, after exposure of 2nd or 4th instar nymphs to PII, can be explained by the retention and distribution of this compound in the insect body as a result of rapid transport from the gut of treated nymphs into other tissues, by the direct and rapid transport via the haemolymph to other tissues, and/or by lower detoxification capacity of adults against the tested compound (Osman et al., 1984).

It is important to point out that, LC\(_{50}\) or LD\(_{50}\) value depends on several factors, such as susceptibility of the insect and its treated stage or instar, lethal potency of the tested compound and its concentration level, method and time of treatment, as well as the experimental conditions. For examples, LD\(_{50}\) of PII against the red cotton stainer *Dysdercus koenigii* has been found as 85.46 and 82.37 mg/l for 4th and 5th instar nymphs, respectively (Banerjee et al., 2008). After treatment of 4th instar larvae of the Asian tiger mosquito, *Aedes albopictus* with PI and PII, LC\(_{50}\) values were estimated in 41.63 and 43.55 \(\mu g/ml \), respectively (Liu and Liu, 2014). LC\(_{50}\) of PII against the booklice *Liposcelis bostrychophila* was calculated in 30.4\(\mu g/cm^2 \) but LC\(_{50}\) of PI was found 64.0 \(\mu g/cm^2 \) (Lu et al., 2014). LC\(_{50}\) of PI against the cat flea *Ctenocephalides felis* was estimated in 10.97 ppm (Rust and Hemsarth, 2017). LC\(_{50}\) values of Pitavastatin against the tobacco hornworm *Manduca sexta* and the Pacific beetle roach *Diploptera punctata* were estimated in 5.23, and 395.2 \(\mu M \), respectively (Li et al., 2017). In the present study on *E. plorans plorans*, LD\(_{50}\) values were 0.388 and 17.022 \(\mu g/cm^2 \), after exposure of 2nd instar nymphs and 4th instar nymphs, respectively. Depending on these data, the 2nd instar nymphs were more sensitive to PII toxicity than 4th instar nymphs.

2. Growth Inhibition of *E. plorans plorans* by PII:

In the current study on *E. plorans plorans*, PII exerted a slight inhibitory action on the nymphal growth of both 4th and 5th instars, after treatment of 2nd instar nymphs, regardless the dose, but the growth rate was remarkably regressed after treatment of 4th instar nymphs with 40 and 20 \(\mu g/cm^2 \). These results were, to some extent, in accordance with some of the reported results of the inhibited growth of various insects by different anti-JH compounds. Several chromene derivatives inhibited the growth of the last instar larvae of the mealworm beetle *Tenebrio molitor* (Roberto et al., 1998). PI and PII exhibited growth-inhibiting activities against *A. aegypti, An. sacharovi* and *An. stephensi* (Saxena et al., 1994; Yasyukevich and
Zvantsov, 1999). Larvae of *M. sexta* were fed on HMG-CoA reductase inhibitors, Fluvastatin, Lovastatin or Pitavastatin-treated food, starting with 1st instar. The treated larvae grew in significantly slow growth rate (Li *et al.*, 2017).

To understand the growth inhibition of *E. plorans plorans*, in the current investigation, PII might block the release of morphogenic peptides, causing the alteration in the ecdysteroid and juvenoid titers (Barnby and Klocke, 1990). Also, PII may affect the tissues and cells undergoing mitosis (Nasiruddin and Mordue, 1994). In addition, PII might exert an inhibitory action on the haemolymph and fat body protein contents, as suggested by Lange *et al.* (1983) for locusts after treatment with precocenes.

3. Disrupted Development and Metamorphosis of *E. plorans plorans* by PII:

3.1. Precocious Metamorphosis:

In the current investigation, exposure of 2nd instar nymphs of *E. plorans plorans* to PII led to 3.33% precociously moulted nymphs into 4th instar, skipping off the 3rd instar (only at the lowest dose). These precocious 4th instar nymphs survived for more than 20 days and eventually died. After exposure of 4th instar nymphs to PII, some treated nymphs precociously metamorphosed into adultoids, omitting the 5th instar, only at doses of 60 and 40 µg/cm². These precocious adultoids appeared without wings. They survived more than one month and eventually perished without mating. These results were, to a great extent, in corroboration with those reported results of precocious metamorphosis in several insects of various orders by different anti-JH compounds. Within Orthoptera, exposure of 4th instar nymphs of the desert locust *Schistocerca gregaria* to PII (15 µg/cm²) induced precocious adultoids (Salem *et al.*, 1982 a, b). Different doses of PI or PII (20-100 µg/insect) induced precocious metamorphosis in the Mediterranean splendid grasshopper *Heteracris littoralis* (Alrubeai, 1986). Among Hemiptera, PII induced precocious metamorphosis in the kissing bugs *Rhodnius prolixus* and *Triatoma dimidiata* when applied by either contact exposure or fumigation (Tarrant *et al.*., 1982). Ayode *et al.* (1996) observed precocious metamorphosis in the brown plant hopper *Nilaparvata lugens* after exposure to PII. In Coleoptera, topical application of PI and PII onto the 2nd larval instar of *L. decemlineata* induced the precocious adultoids (Farazmand and Chaika, 2008). In addition, precocious metamorphosis had been induced by precocenes in several insects of Diptera, such as the flesh fly *Neobellieria bullata* (Darvas *et al.*, 1990) and the house fly *Musca domestica* (Gaur and Kumar, 2009); as well as Lepidoptera, such as the tobacco cutworm *Spodoptera litura* (Srivastava and Kumar, 1999) and *P. ricini* (Khan and Kumar, 2000). Moreover, other anti-JH compounds induced such feature of impaired metamorphosis in various insects, such as Fluoromevalonate (FMev) against the fall webworm *Hyphantria cunea* (Farag and Varjas, 1983) and the lawn armyworm *Spodoptera mauritica* (Balamani and Nair, 1989); ETB (Kuwano *et al.*, 1988), KK-42 (Kuwano *et al.*, 1985; Akai and Mauchamp, 1989), KK-22 (Asano *et al.*, 1984, 1986) and 3-pyridine derivatives (Yoshida *et al.*, 2000) against *B. mori*. Treatment of *N. bullata* larvae with KK-110 and J-2710 resulted in precocious pupation (Darvas *et al.*, 1990).

For interpretation of the production of precocious 4th instar nymphs or precocious adultoids, after exposure of of *E. plorans plorans* nymphs to PII, in the present study, it is well known that the cells of corpora allata, JH-producing organs in insects, are selectively destroyed by precocenes (Bowers *et al.*, 1976; Ohta *et al.*, 1977; Pratt *et al.*, 1980; Brooks and McCaffery, 1990). Thus, precocious metamorphosis in the present grasshopper indicated the prohibition of JH production
by PII. On the molecular basis of JH action, Wilson (2004) reported that the effects of JH may be due to interference with the expression or action of certain genes, particularly the broad complex (br-C) transcription factor gene, that direct changes during metamorphosis. In hemimetabolous insects (like the present grasshopper), Erezyilmaz et al. (2006) studied the role of br for inducing the precocious adult molt in *O. fasciatus* after application of PII to 3rd instar nymphs, and suggested that a loss of *br* mRNA was caused at the precocious adult molt. However, a deep discussion on the action mechanisms of anti-JH compounds in insects was clearly shown by many authors (Staal et al., 1981; Hamnett and Pratt, 1983; Brooks and McCaffery, 1990; Unnithan et al., 1995; Miao et al., 2001; Kumar and Khan, 2004; Chen et al., 2005a,b; Minakuchi and Riddiford, 2006; Amiri et al., 2010).

3.2. Suspended Development:

In insects, a state of suspended development attracts a great attention of some entomologists. The induction of suspended development was recorded in some insect species as a response to some insect growth regulators (IGRs) or botanicals. Among IGRs, some authors (Salem et al., 1982a; El-Gammal and Taha, 1984; Ghoneim, 1988; Abou El-Ela, 1993) observed permanent (over-aged) nymphs of *S. gregaria* after treatment with certain IGRs. Permanent larvae of the European corn borer *Ostrinia nubilalis* were induced depending upon the dose of fenoxycarb and the timing of application onto the 5th instar larva (Gadenne et al., 1990). Permanent larvae of *P. argyrostroma* were induced after topical application of last instar larvae with 100 µg/larva of chlorfluazuron (Ghoneim and Ismail, 1995). In addition, some botanicals, plant extracts or isolated plant products, had been reported to induce permanent nymphs in various insects, such as the milkweed bug *Oncopeltus fasciatus* after injection of the newly moulted last instar nymphs with azadirachtin (Dorn et al., 1986); *O. fasciatus* and *D. peruvianus* after topical application of *Manilkara subsericea* (Sapotaceae) extracts onto 4th instar nymphs (Fernandes et al., 2013); *S. litura* after treatment of larvae with acetone leaf extract of *Withania somnifera* (Solanaceae)(Gaur and Kumar, 2010); and the confused flour beetle *Tribolium confusum* after treatment of 5th instar and 6th instar larvae with 1µg/µl of Andrographolide (a terpenoid isolated from the leaves of *Andrographis paniculata*, Acanthaceae)(Lingampally et al., 2013). Apart from IGRs and botanicals, El-Gammal et al. (1986) observed permanent nymphs in *S. gregaria* after exposure of gamma irradiation (dose of 20 gray) against the 3rd instar nymphs.

In the present work, the deranged development was detected by 'permanent nymphs' that induced in 2nd instar nymphs (3.85%) after exposure only to 20 µg/cm² of PII. Also, similar permanent nymphs were induced during the 4th instar. No permanent nymphs had been induced after exposure of 4th instar nymphs to PII. All permanent nymphs survived two-fold period of control congeners and eventually perished as nymphs. As seen in the available literature, no reported permanent nymphs in insects had been induced by precocenes or other anti-JH compounds. Therefore, the present study provides the first report of this feature of suspended development in *E. plorans plorans* by Precocene in the world. To explicate the induction of permanent nymphs of *E. plorans plorans*, in the current investigation, PII exerted an inhibitory action on the prothoracic gland (ecdysone-producing gland) and hence the ecdysone could not be synthesized and/or released. It is well known that the absence of ecdysone leads to failure of ecdysis. PII might disrupt the ecdysteroid metabolism or alternatively acted directly to inhibit the release of ecdysis-triggering hormone (Gaur and Kumar, 2010).
In addition, the current investigation obviously revealed that PII exhibited multiple activities against *E. plorans plorans*: anti-JH activity and anti-ecdysteroid activity. These data have validated the reported anti-ecdysteroid activity of other anti-JH compounds in some insects. The imidazole compound KK-42 was found to delay/inhibit the ecdysteroid production in *O. nubilalis* and *S. gregaria* (Gelman et al., 1995; Wang and Schnal, 2001). Another imidazole, SDIII, had been reported to exert strong anti-JH and anti-ecdysteroid actions on *B. mori* (Tan et al., 1992). Results obtained by Yoshida et al. (2000) revealed that the 3-pyridine derivatives temporarily act as anti-ecdysteroids against *B. mori*.

Conclusion:

Precocene II exhibited a lethal activity against nymphs and adults of the grasshopper *E. plorans plorans*, inhibited the nymphal growth, induced precocious moult to last nymphal instar and precocious sterile adultoids. In addition to this anti-JH activity, PII exhibited anti-ecdysteroid activity has appeared in permanent nymphs. In spite of these findings, it may be recommended to use PII for pest control but after study its activity and persistence under the field condition in the foreseeable future.

Acknowledgement:

Authors thank Dr. Heba Hassan, Prof. at Plant Protection Research Institute, Agricultural Research Center, Doqqi, Giza, Egypt, for providing us with of PII. They, also, thank Locust and Grasshopper Department, at the same Institute, for providing a sample of susceptible strain of *E. plorans plorans*.

REFERENCES

Assessment of the toxic and disruptive effects of Precocene II on growth and metamorphosis of the grasshopper

Assessment of the toxic and disruptive effects of Precocene II on growth and metamorphosis of the grasshopper

https://doi.org/10.1017/S1742758400018567

Assessment of the toxic and disruptive effects of Precocene II on growth and metamorphosis of the grasshopper

10.1155/2014/645687

Assessment of the toxic and disruptive effects of Precocene II on growth and metamorphosis of the grasshopper

